
Revision History

v1.0 December 2008 - Initial, read only release of the SRA toolkit library

v2.0
March 17, 2009 - Write support added to the SRA Toolkit. Tables, rows and column

content now be added using the APIs.

v2.01
March 25, 2009 - Minor updates to sample program and removal of '-lkapp' in link

instructions.

v2.02 April 29, 2009 - Added read/write schema and updated list of required libraries

v2.03 September 11, 2009 - Changed references of "Short Read" to "Sequence Read"

Author

Ty Roach (contractor) roachtg@ncbi.nlm.nih.gov

Contents

1. Revision History

2. Author

3. Contents

4. System Requirements

5. Overview

6. Building the ToolKit

7. Toolkit Content

8. Data Structures

9. Using the ToolKit

10. APIs

System Requirements

Operating System: Linux (tested on SUSE Enterprise Edition 9 SP 3)

Architecture: x86 (32 or 64 bit)

Software: make (version 3.80 or later)

gcc (version 4.1.2 for 64 bit, version 3.4.2 for 32 bit)

icc (version 9.0 or 9.1)

Libraries: libz (version 1)

libbz2 (version 1)

libxml2 (tested with version 2.6.7)

Overview

This document describes the National Center for Biotechnology Information"s (NCBI) Sequence

Read Archive (SRA) toolkit library. For more information, please visit the SRA website.

The toolkit library provides the mechanism for inserting and search for information in the SRA

database. The current version of the toolkit assumes the archive is on local platform (versus on a

remote platform).

SRA Background

Relational databases are good for recording and manipulating related data, indexing, making

arbitrarily complex joins, processing complex queries but they are expensive to use for tera and

peta-byte long term storage. They are inflexible, tend to be slightly wasteful, purposely avoid

using the file system, and encapsulate all data behind their servers. In summary, they are bulky,

require significant management, inflexible and costly both in terms of license and use of storage.

Simple file-based repositories are lightweight, make use of the file system that we already have,

and are stored according to some object model (i.e. a run is in a single file that can be accessed,

shipped, modified, removed, etc.). This approach suffers from a lack of support for indexed

queries, relations where necessary. Archiving often means tar and compression often means gzip

or bzip2, making the data difficult (or impossible) to access in a repository setting.

We needed something that has much of the power of a relational database while being

lightweight, transportable and flexible like a flat-file storage.

The SRA uses a column based approach for managing its data vs. the traditional relational, row-

based, databases.

Row vs. Column Based Databases

Row-based databases store data as a series of row structures, where each structure contains one

or more fields. Column based databases turn the structure on its side, so to speak, and store data

as a series of columns where each field is stored in its own column. Rows are then assembled

from multiple columns.

Row-based databases take advantage of having all fields of data in a single structure for

efficiency of retrieving the entire row with a single read. Column-based databases take advantage

of a single data type per series to achieve better storage utilization (packing and/or compression)

and are good at delivering many result set rows of only some of the row's fields (that is, they

only retrieve what was requested).

Row-based databases have to work hard to add or remove a row column, and must rewrite entire

tables to do so. Column based databases (if properly designed) can leave existing/remaining table

data intact when adding/removing a column.

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=concepts&m=doc&s=concepts

As mentioned previously, the SRA uses a column based approach for managing its data.

The column-based approach allows the flexibility to modify the schema as Sequence Read

technology matures. Also, the amount of data being stored enormous, requiring effective yet

efficient compression. The SRA takes advantage of the ability design both the schema and

compressors to achieve custom results.

The needs of a massive repository like the SRA also impact the way data is stored, shared,

replicated, and backed up. The SRA column-based design makes use of the file system to keep

columns physically separate. This makes it possible for to store the most frequently accessed

series (the "fastq" data) in fast, near storage, while signal data can be located in slower, bulk

storage. Columns can also be separated into read-only and modifiable storage.

Finally, the column approach allows high efficiency for serving data, using a design that both

implements and relies upon the read-ahead caching schemes of modern operating systems.

Building the ToolKit

These are the steps for building the SRA toolkit library:

1. Unpack the tar-ball

2. Change to the root directory after unpacking the toolkit tar-ball

3. "make OUTDIR=$SRA_HOME out." to build the target.

4. "make" to build the toolkit.

This will result in the following structure being created (note - in this example, the platform is a

64 bit machine):

 $SRA_HOME/bin64

 $SRA_HOME/lib64

When compiling and linking with the SRA toolkit, you will need to set the library and include

search paths appropriately. As a reference, using the above example, the include paths would be

set as follows:

 -I<toolkit-root-install-dir>/inc/gcc

 -I<toolkit-root-install-dir>/itf

Furthermore, be sure to set the LD_LIBRARY_PATH environment variable to point to the

location of the toolkit shared libraries. For example:

 export LD_LIBRARY_PATH=$SRA_HOME/lib64

SDK Content Description

The SRA SDK is organized into binary (bin64 or bin32) and library (lib64 or lib32, ilib64 or

ilib3) sub-directories. The binary directory contains a number of tools and scripts, some of which

are used for processing of data submitted to NCBI, and others are simply useful tools for

analyzing or testing data. The libraries provide access to SRA SDK APIs in the event that

custom applications are needed.

Format

Loading Tool

(to SRA Format)

Dumping Tool

(from SRA Format)

Tool Name Availability Tool Name Availability

FASTQ fastq-loader April 2009 fastq-dump December 2008

454(SFF) sff-loader June 2009 sff-dump June 2009

Illumina (Native) illumina-loader June 2009 illumina-dump May 2009

Illumina (SRF) srf-loader April 2009 N/A N/A

AB SOLiD (Native) abi-loader April 2009 abi-dump April 2009

AB SOLiD (SRF) srf-loader April 2009 N/A N/A

Data Structures

SRAError

All messages that can fail are designed to return a status code. They are typed as int to conform

to traditional return register convention. Messages that cannot fail will generally have a return

type of void or may return a value.

The status/error codes returned are defined as:

sraNoErr no error

sraUnknownErr an unanticipated error occurred

sraUnsupported

sraInvalid an invalid parameter or state was encountered

sraPermErr the operation failed due to lack of permission

sraBusyErr the operation failed

sraBadPath unable to form a proper path

sraNotFound a requested or needed object was not found

sraExists

sraConflict a needed object is in conflicting state

sraBadRange an invalid id range was specified

sraMemErr a memory allocation failed

sraIOErr an I/O error occurred

sraEndMedia the target volume is full

sraIncompleteErr an I/O operation did not complete

sraTooBigErr

sraCorruptErr a corrupt object was detected

sraBadArchErr the current architecture has unsupported byte order

sraBadVersErr attempt to operate on an unsupported db version

sraFileLimErr have reached the limit on the number of open files

sraBadKey bad submission, run or spot key

sraBuffErr insufficient buffer space was provided

sraBadRange

sraTimeoutErr

To generate an English translation for the SRRError value, call the SRRAErrToEnglish() API.

SRAPlatforms

Categorizes platforms into types as follows:

Enumeration Value

SRA_PLATFORM_UNDEFINED 0

SRA_PLATFORM_454 1

SRA_PLATFORM_ILLUMINA 2

SRA_PLATFORM_ABSOLID 3

SRAReadTypes

Enumeration Value

SRA_READ_TYPE_TECHNICAL 1

SRA_READ_TYPE_BIOLOGICAL 2

SRA Read Schema

A column is configured as a sequence of blobs, and each blob is a sequence of records, indexed

by spot id.

Column Label Description

PLATFORM NCBI:SRA:platform_id U8 size, SRAPlatforms enum value

NAME ascii NUL-terminated spot name

X U16 X coordinate for spot

Y U16 Y coordinate for spot

SPOT_DESC NCBI:SRA:SpotDesc synthesized SRASpotDesc structure

SPOT_LEN U16 spot length for this row

SIGNAL_LEN U16 signal length for this row

NREADS U8 number of reads in this row

CLIP_QUALITY_RIGHT U16 right-side quality clip for this row

READ_DESC NCBI:SRA:ReadDesc
synthesized array of SRAReadDesc [nreads

]

READ_SEG NCBI:SRA:Segment
array of SRASegment [nreads] - preferred

over READ_LEN

READ_LEN U16 array of lengths U16 [nreads]

READ_TYPE NCBI:SRA:read_type
array of U8 [nreads], SRAReadTypes

values

READ_FILTER NCBI:SRA:read_filter
array of U8 [nreads], SRAReadFilter

values

CS_KEY INSDC:fasta array of char [nreads]

READ default INSDC:fasta DNA sequence in IUPAC, char [spot_len]

READ NCBI:2na
DNA sequence in NCBI 2na format - no 'N'

value

READ NCBI:4na DNA sequence in NCBI 4na format

CSREAD default INSDC:csfasta Color space sequence, char [spot_len]

CSREAD NCBI:2cs
Color space sequence in 2cs format - no '.'

value

QUALITY default NCBI:qual1 Phred-like quality scores, U8 [spot_len]

QUALITY NCBI:qual4 Illumina 4-channel qualities I8[4][spot_len]

SIGNAL NCBI:isamp1 454 signal I16 [sig_len]

SIGNAL NCBI:isamp4 Illumina/AB signal F32[4][sig_len]

INTENSITY NCBI:isamp4 Illumina intensities F32[4][sig_len]

NOISE NCBI:isamp4 Illumina noise F32[4][sig_len]

POSITION U16
454 base to signal position index

U16[spot_len]

SRA Write Schema

Column Label Description

PLATFORM NCBI:SRA:platform_id U8 size, SRAPlatforms enum value

NAME_FMT ascii U8 size, SRAPlatforms enum value

NREADS U8 U8 number of reads per spot

READ_SEG NCBI:SRA:Segment
SRASegment [nreads] describing read

layout

READ_TYPE NCBI:SRA:read_type U8 [nreads] with values SRAReadTypes

READ_FILTER NCBI:SRA:read_filter U8 [nreads] with SRAReadFilter values

LABEL_SEG NCBI:SRA:Segment SRASegment [nreads] describing label text

LABEL ascii non-delimited string of label characters

CS_KEY INSDC:fasta char [nreads] with CS keys

READ INSDC:fasta DNA read sequence in IUPAC chars

CSREAD INSDC:csfasta Color space read sequence

QUALITY NCBI:qual1 Phred-like quality scores

CLIP_QUALITY_RIGHT U16 454 base to signal position index

FTC NCBI:fsamp1 individual color space signal channels

FAM NCBI:fsamp1

CY3 NCBI:fsamp1

TXR NCBI:fsamp1

CY5 NCBI:fsamp1

Using the ToolKit

Once the toolkit has been installed and configured, you may build applications using the APIs in

the toolkit libraries by supplying the following compiler and linker flags:

 -I<toolkit-root-install-dir>/inc/gcc

 -I<toolkit-root-install-dir>/itf

 -L$SRA_HOME/lib64

 [READ] -lsradb -lvdb -lklib -lkascii -lm -lz -lbz2 -lpthread

 or

 [WRITE] -lwsradb -lwvdb -lklib -lkascii -lm -lz -lbz2 -lpthread

where <sra-toolkit-root> is the full path to the root directory where the installation/configuration

process deposited the toolkit.

Using the example from above, it would be $SRA_HOME/lib64.

NOTE - the "-lsradb" and "-lwsradb" libraries are mutually exclusive, that is, they should not be

used at the same time. When building applications that read from the archive, you should add

"#include <sra/sradb.h>" to your source code and add the "-lsradb" link option.

When building applications that write to the archive, you should add "#include <sra/wsradb.h>"

to your source code and add the "-lwsradb" link option.

Be sure to set the LD_LIBRARY_PATH environment variable to point to the location of the

toolkit shared libraries. For example:

 export LD_LIBRARY_PATH=$SRA_HOME/lib64

See the example below for a reference application that reads data from an archive using the SRA

toolkit.

Read Example

#include <stdio.h>

#include <stdlib.h>

#include <klib/defs.h>

#include <vdb/types.h>

#include <klib/rc.h>

#include <sra/sradb.h>

int main (int argc, char *argv []) {

 rc_t rc;

 SRAMgr const *sra;

 SRATable const *tbl;

 spotid_t max;

 const char *table_to_read = "myTable";

 SRAColumn const *read;

 SRAColumn const *qual;

 const void *col_data;

 bitsz_t off, sz;

 spotid_t id;

 if (argc == 2)

 table_to_read = argv[1];

 printf("initializing manager\n");

 rc = SRAMgrMakeRead(&sra);

 if (rc != 0) {

 fprintf(stderr,"failed initializing sra mgr

(%s)\n",SRAErrToEnglish(SRAErrMake(rc),NULL));

 return SRAErrMake(rc);

 }

 printf("opening table\n");

 rc = SRAMgrOpenTableRead (sra, &tbl, table_to_read);

 if (rc != 0) {

 fprintf(stderr,"failed opening table

(%s)\n",SRAErrToEnglish(SRAErrMake(rc),NULL));

 SRAMgrRelease(sra);

 return SRAErrMake(rc);

 }

 printf("getting max spot id\n");

 rc = SRATableMaxSpotId(tbl, &max);

 if (rc != 0) {

 fprintf(stderr,"failed getting max spot id\n");

 SRATableRelease(tbl);

 SRAMgrRelease(sra);

 return SRAErrMake(rc);

 }

 printf("opening READ column\n");

 rc = SRATableOpenColumnRead(tbl, &read, "READ", insdc_fasta_t);

 if (rc != 0) {

 fprintf(stderr,"failed opening READ column

(%s)",SRAErrToEnglish(SRAErrMake(rc),NULL));

 SRATableRelease(tbl);

 SRAMgrRelease(sra);

 return SRAErrMake(rc);

 }

 printf("opening QUALITY column\n");

 rc = SRATableOpenColumnRead(tbl, &qual, "QUALITY", ncbi_qual1_t);

 if (rc != 0) {

 fprintf(stderr,"failed opening QUALITY column

(%s)",SRAErrToEnglish(SRAErrMake(rc),NULL));

 SRAColumnRelease(read);

 SRATableRelease(tbl);

 SRAMgrRelease(sra);

 return SRAErrMake(rc);

 }

 for (id = 1; id <= max; ++id) {

 printf("reading READ column\n");

 rc = SRAColumnRead(read, id, &col_data, &off, &sz);

 if (rc) {

 fprintf(stderr,"failed reading READ column

(%s)",SRAErrToEnglish(SRAErrMake(rc),NULL));

 continue;

 }

 printf("off: %lu, sz: %lu, bases: %lu\n", off, sz, sz / 8);

 printf("reading QUALITY column\n");

 rc = SRAColumnRead(qual, id, &col_data, &off, &sz);

 if (rc) {

 fprintf(stderr,"failed reading QUALITY column

(%s)",SRAErrToEnglish(SRAErrMake(rc),NULL));

 continue;

 }

 printf("off: %lu, sz: %lu, bases: %lu\n", off, sz, sz / 8);

 } /* end for-loop on spot-id's */

 /*

 * NOTE - It is VERY important to release the toolkit objects once

their use is no longer required.

 */

 SRAColumnRelease(qual);

 SRAColumnRelease(read);

 SRATableRelease(tbl);

 SRAMgrRelease(sra);

 return SRAErrMake(rc);

}

To build this program:

gcc -o SimpleRead -I $SRA_INSTALL_DIR/inc/gcc -I $SRA_INSTALL_DIR/itf -L

$SRA_HOME/lib64 SimpleRead.c -lsradb -lvdb -lklib -lkascii -lm -lz -lbz2 -lpthread

where $SRA_INSTALL_DIR = <toolkit-root-install-dir>

NOTE - Assumes that LD_LIBRARY_PATH has been set as described above and that the above

code is in a file called "SimpleRead.c".

APIs

The sradb interface uses an object-oriented paradigm with opaque pointers to C structures

representing objects, and C functions defining messages upon those objects. All messages return

an architecture native integer status code with a value defined the SRAError enumeration.

Object ownership is strictly defined, with all externalized objects belonging to the application,

and being destroyed by the appropriate destructor message. Requests for destruction are not

guaranteed to be honored: Specifically, some requests may be rejected if an object (reference) is

being used internally by another object . There is therefore an order to object-ref destruction

(releasing) that may be enforced.

All objects are reference counted. To use an object, you may pass in a loaned reference in your

messages. This is to say, if you send a message to some object-ref that takes another object-ref as

a parameter, you don't have to pass in a new reference to that object, because it can borrow

yours.

If a method chooses to hold on to an object-ref it received as a parameter, i.e. a loaned reference,

it can send an *AddRef message (eg one of SRANamelistAddRef(), SRAMgrAddRef(),

SRAMgrAddRef()) to that object-ref in order to attach its own reference to it. In that way, it

becomes co-owner.

Every owner of a reference is required to release their reference when the object is no longer

needed. The object is actually garbage collected when the last reference is released, which is why

one would want to check the status code: an object can refuse to be collected.

Strings are universally represented in UTF-8 UNICODE by a data pointer and size, keeping in

mind that with UTF-8, size and length are not synonymous/interchangeable. Strings are required

to be zero-terminated.

Paths are represented as standard Unix paths, where the delimiter is a forward slash "/".

Backward slashes are not permitted. A database is given a file path and must not contain a

trailing slash. Paths may be relative, as indicated by an initial character other than "/", including

the dot (".") for current directory or dot-dot ("..") for parent directory. The shell meta-character

"~" is not interpreted.

Key strings may be translated into paths by the implementation, meaning that the string may not

contain embedded slashes ("/" or "\"), neither are leading periods (".") permitted for the same

reason. Key strings are recommended to be ASCII-7, a proper subset of UTF-8 UNICODE.

SRAErrMake

Description

convert rc_t to simple integer

Prototype

int SRAErrMake (rc_t rc);

Parameters:

Parameter Input | Output Description

rc in SRA return code type (rc_t) that is to be converted into an integer.

SRAErrToEnglish

Description

Returns an ASCII NUL-terminated string with an English explanation of error code

Prototype

const char *SRAErrToEnglish (int32_t sraErr, size_t *bytes);

Parameters:

Parameter
Input |

Output
Description

sraErr in An SRAErr status code requiring explanation

bytes
out, NULL

ok

Optional return parameter for size of return string. also indicates the

length, since this interface specifies ASCII-7.

Read APIs

SRANamelistAddRef

Description

Add a Namelist reference

Prototype

rc_t SRANamelistAddRef (const SRANamelist *self);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRANamelist value for which to add a reference.

SRANamelistRelease

Description

Release a SRANamelist referenced object.

Prototype

rc_t SRANamelistRelease (const SRANamelist *self);

Parameters:

Parameter Input | Output Description

self in The SRANamelist pointer to the object to be released.

SRANamelistCount

Description

Get the number of names

Prototype

rc_t SRANamelistCount (const SRANamelist *self, uint32_t *count);

Parameters:

Parameter Input | Output Description

self in The SRANamelist pointer.

count out Return value.

SRANamelistGet

Description

Get the list of names.

Prototype

rc_t SRANamelistGet (const SRANamelist *self, uint32_t idx, const char

**name);

Parameters:

Parameter Input | Output Description

self in The SRANamelist pointer.

idx in zero-based name index

name out Return parameter for zero-terminated name.

SRAMgrAddRef

Description

Add a reference to the SRAMgr handle

Prototype

rc_t SRAMgrAddRef (const SRAMgr *self);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRAMgr value for which to add a reference.

SRAMgrRelease

Description

Release the reference to the SRAMgr handle.

Prototype

rc_t SRAMgrRelease (const SRAMgr *self);

Parameters:

Parameter Input | Output Description

self in The pointer to the SRAMgr object to be released.

SRAMgrMakeRead

Description

Create library handle for read-only access. NOTE - not implemented in update library and the

read-only library may not be mixed with read/write. In order to read from a Sequence Read

Archive, you must first get a library handle (done via this API call).

Prototype

rc_t SRAMgrMakeRead (const SRAMgr **mgr);

Parameters:

Parameter
Input |

Output
Description

mgr out
Returns the SRAMgr object that will be used to reference the

Archive.

SRAMgrOpenDatatypesRead

Description

Open datatype registry object for requested access.

Prototype

rc_t SRAMgrOpenDatatypesRead (const SRAMgr *self, struct VDatatypes const

**dt);

Parameters:

Parameter Input | Output Description

mgr in SRAMgr handle.

dt out Return parameter for datatypes object

SRAMgrOpenDatatypesUpdate

Description

Open datatype registry object for requested access

Prototype

rc_t SRAMgrOpenDatatypesUpdate (const SRAMgr *self, struct VDatatypes **dt

);

Parameters:

Parameter Input | Output Description

mgr in SRAMgr handle.

dt out Return parameter for datatypes object

SRATableAddRef

Description

Add a reference to a SRATable object

Prototype

rc_t SRATableAddRef (const SRATable *self);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable value for which to add a reference.

SRATableRelease

Description

Release the reference to the SRATable object.

Prototype

rc_t SRATableRelease (const SRATable *self);

Parameters:

Parameter Input | Output Description

self in The pointer to the SRATable object to be released.

SRAMgrOpenTableRead

Description

Open an existing table.

Prototype

rc_t SRAMgrOpenTableRead (const SRAMgr *self, const SRATable **tbl, const

char *path, ...);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

tbl out return parameter for the table

path in zero-terminated string referencing the table in the filesystem.

SRAMgrVOpenTableRead

Description

Open an existing table.

Prototype

rc_t SRAMgrVOpenTableRead (const SRAMgr *self, const SRATable **tbl, const

char *path, va_list args);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

tbl out return parameter for the table

path in zero-terminated string referencing the table in the filesystem.

SRATableBaseCount

Description

Get the number of stored bases

Prototype

rc_t SRATableBaseCount (const SRATable *self, uint64_t *num_bases);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

num_bases out return parameter for the base count.

SRATableSpotCount

Description

Get the number of stored spots

Prototype

rc_t SRATableSpotCount (const SRATable *self, uint64_t *spot_count);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

num_spots out return parameter for the spot count.

SRATableMaxSpotId

Description

Returns the maximum spot id. A table will contain a collection of spots with ids from 1 to max

(spot_id) unless empty.

Prototype

rc_t SRATableMaxSpotId (const SRATable *self, spotid_t *id);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

id out return parameter of last spot id or zero if the table is empty.

SRATableGetSpotId

Description

Convert spot name to spot id

Prototype

rc_t SRATableGetSpotId (const SRATable *self, spotid_t *id, const char

*spot_name);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

id out return parameter for 1-based spot id.

spot_name in External spot name string in platform canonical format.

SRATableListCol

Description

Returns a list of simple column names. Each name represents at least one typed column.

Prototype

rc_t SRATableListCol (const SRATable *self, SRANamelist **names);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

names out Return parameter for names list

SRATableColDatatypes

Description

Returns list of type declarations for the named column.

Prototype

rc_t SRATableColDatatypes (const SRATable *self, const char *col, uint32_t

*dflt_idx, SRANamelist **typedecls);

Parameters:

Parameter
Input |

Output
Description

self in Pointer to the SRATable object.

col in column name

dflt_idx
out, NULL

ok

Returns the zero-based index into "typedecls" of the default datatype

for the named column

typedecls out List of datatypes available for named column

SRATableMetaRevision

Description

Returns current revision number where zero means tip.

Prototype

rc_t SRATableMetaRevision (const SRATable *self, uint32_t *revision);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

revision out Return parameter holding the revision number.

SRATableMaxMetaRevision

Description

Returns the maximum revision available for the given table.

Prototype

rc_t SRATableMaxMetaRevision (const SRATable *self, uint32_t *revision);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

revision in Return parameter holding the revision number

SRATableUseMetaRevision

Description

Opens the indicated revision of metadata. All non-zero revisions are read-only.

Prototype

rc_t SRATableUseMetaRevision (const SRATable *self, uint32_t revision);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

revision in The metadata table revision to open

SRATableOpenMDataNodeRead

Description

Open a metadata node.

Prototype

rc_t SRATableOpenMDataNodeRead (const SRATable *self, struct KMDataNode

const **node, const char *path, ...);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

node out return parameter for metadata node

path in Simple or hierarchical zero-terminated path to the node.

SRATableVOpenMDataNodeRead

Description

Open a metadata node.

Prototype

rc_t SRATableVOpenMDataNodeRead (const SRATable *self, struct KMDataNode

const **node, const char *path, va_list args);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

node out return parameter for metadata node

path in Simple or hierarchical zero-terminated path to the node.

SRATableListMetaChild

Description

Returns a list of simple child node names

Prototype

rc_t SRATableListMetaChild (const SRATable *self, SRANamelist **names, const

char *node, ...);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

names out return parameter for names list

path out simple or hierarchical NULL termianted path to the node.

SRATableVListMetaChild

Description

Returns a list of simple child node names.

Prototype

rc_t SRATableVListMetaChild (const SRATable *self, SRANamelist **names,

const char *node, va_list args);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRATable object.

names out return parameter for names list

path out simple or hierarchical NULL termianted path to the node.

SRAColumnAddRef

Description

Add a reference to a column object.

Prototype

rc_t SRAColumnAddRef (const SRAColumn *self);

Parameters:

Parameter Input | Output Description

self int Pointer to the SRAColumn that is to be referenced.

SRAColumnRelease

Description

Release the reference to the column object.

Prototype

rc_t SRAColumnRelease (const SRAColumn *self);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRAColumn that is to be de-referenced.

SRATableOpenColumnRead

Description

Open a column for reading

Prototype

rc_t SRATableOpenColumnRead (const SRATable *self, const SRAColumn **col,

const char *name, const char *datatype);

Parameters:

Parameter
Input |

Output
Description

col out return parameter for newly opened column

name in zero-terminated string in UTF-8 giving column name

datatype
in, NULL

ok

Optional zero-terminated typedecl string describing fully qualified

column data type, or if NULL the default type for column.

SRAColumnDatatype

Description

Access the data type

Prototype

rc_t SRAColumnDatatype (const SRAColumn *self, struct VTypedecl *type,

struct VTypedef *def);

Parameters:

Parameter Input | Output Description

self in Pointer to the SRAColumn being accessed.

type out, NULL ok returns the column type declaration

def out, NULL ok Returns the definition of the type returned in "type_decl"

SRAColumnGetRange

Description

Get a contiguous range around a spot id, e.g. tile for Illumina

Prototype

rc_t SRAColumnGetRange (const SRAColumn *self, spotid_t id, spotid_t *first,

spotid_t *last);

Parameters:

Parameter
Input |

Output
Description

self in Pointer to the SRAColumn being accessed.

id in return parameter for 1-based spot id

first out
First id in range is returned, where at least ONE (first or last) must be

NOT-NULL

last out
Last id in range is returned, where at least ONE (first or last) must be

NOT-NULL

SRAColumnRead

Description

Read row data

Prototype

rc_t SRAColumnRead (const SRAColumn *self, spotid_t id, const void **base,

bitsz_t *offset, bitsz_t *size);

Parameters:

Parameter
Input |

Output
Description

self in Pointer to the SRAColumn being accessed.

id in spot row id between 1 and max (spot id)

base out
Pointer to the start of the spot row data (used with offset to get

location).

offset out
bit offset to the start of the spot row data (used with base to get

location).

size out size in bits of row data.

Write APIs

SRAMgrMakeUpdate

Description

Create library handle for read/write access.NOTE - not implemented in read-only library, and the

read-only library may not be mixed with read/write

Prototype

rc_t SRAMgrMakeUpdate (SRAMgr **mgr, struct KDirectory *wd);

Parameters:

Parameter
Input |

Output
Description

self out return reference to the SRAMgr object.

wd in, NULL ok
Optional working directory for accessing the file system. mgr will

attach its own reference.

SRAMgrCreateTable

Description

creates a new table

Prototype

rc_t SRAMgrCreateTable (SRAMgr *self, SRATable **tbl, const char *path, ...

);

Parameters:

Parameter Input | Output Description

self in Pointer to SRAMgr handle

tbl out Return parameter for table

path in zero-terminated string referencing the table in the filesystem.

SRAMgrVCreateTable

Description

Creates a new table.

Prototype

rc_t SRAMgrVCreateTable (SRAMgr *self, SRATable **tbl, const char *path,

va_list args);

Parameters:

Parameter Input | Output Description

self in Pointer to SRAMgr handle

tbl out Return parameter for table

path in zero-terminated string referencing the table in the filesystem.

SRAMgrOpenTableUpdate

Description

Open an existing table.

Prototype

rc_t SRAMgrOpenTableUpdate (SRAMgr *self, SRATable **tbl, const char *path,

...);

Parameters:

Parameter Input | Output Description

self in Pointer to SRAMgr handle

tbl out Return parameter for table

path in zero-terminated string referencing the table in the filesystem.

SRAMgrVOpenTableUpdate

Description

Open an existing table.

Prototype

rc_t SRAMgrVOpenTableUpdate (SRAMgr *self, SRATable **tbl, const char *path,

va_list args);

Parameters:

Parameter Input | Output Description

self in Pointer to SRAMgr handle

tbl out Return parameter for table

path in zero-terminated string referencing the table in the filesystem

SRATableLocked

Description

Check to see if a table is locked. Used in conjunction with updating a table. Note - you cannot

open a locked table for an update. If the table is locked, you may attempt to unlock the table.

Prototype

bool SRATableLocked (const SRATable *self);

Parameters:

Parameter Input | Output Description

self in Table handle (pointer to SRATable) to check whether lock exists.

SRATableLock

Description

Lock a table. Used in conjunction with updating a table. Note - you cannot open a locked table

for an update. Once a table is locked, it can be safely modified until the table is unlocked.

Prototype

rc_t SRATableLock (SRATable *self);

Parameters:

Parameter Input | Output Description

self in Table handle (pointer to SRATable) to apply lock to.

SRATableUnlock

Description

Unlock a table. Used in conjunction with updating a table. Note - you cannot open a locked table

for an update.

Prototype

rc_t SRATableUnlock (const SRATable *self, SRATable **unlocked);

Parameters:

Parameter
Input |

Output
Description

self in Table handle (pointer to SRATable) to attempt to unlock.

unlocked out
return pointer to Table handle (pointer to SRATable) of the unlocked

table.

SRATableNewSpot

Description

Creates a new spot record, returning spot id.

Prototype

rc_t SRATableNewSpot (SRATable *self, spotid_t *id, uint8_t dim, const

uint16_t *coord);

Parameters:

Parameter
Input |

Output
Description

self in Handle of table (SRATable) that is being referenced.

id in return parameter for id of newly created spot

dim in
spot coordinate, where "dim" >= 3. The coordinate vector is reversed

such that:

y = coord[0], x = coord[1], <next> = coord[2], ...

coord in

spot coordinate, where "dim" >= 3. The coordinate vector is reversed

such that:

y = coord[0], x = coord[1], <next> = coord[2], ...

SRATableOpenSpot

Description

Opens an existing spot record from id

Prototype

rc_t SRATableOpenSpot (SRATable *self, spotid_t id);

Parameters:

Parameter Input | Output Description

self in Handle of table (SRATable) that is being referenced.

id in 1-based spot id.

SRATableCloseSpot

Description

Closes a spot opened with either NewSpot or OpenSpot

Prototype

rc_t SRATableOpenSpot (SRATable *self, spotid_t id);

Parameters:

Parameter Input | Output Description

self in Handle of table (SRATable) that is being referenced.

id in 1-based spot id.

SRATableCommit

Description

Commit all changes

Prototype

rc_t SRATableCommit (SRATable *self);

Parameters:

Parameter Input | Output Description

self in Handle of table (SRATable) that is being referenced.

SRATableOpenColumnWrite

Description

Open a column for write

Prototype

rc_t SRATableOpenColumnWrite (SRATable *self, uint32_t *idx, SRAColumn

**col, const char *name, const char *datatype);

Parameters:

Parameter
Input |

Output
Description

self in Handle of table (SRATable) that is being referenced.

idx out return parameter for 1-based column index.

col out, NULL ok optional return parameter for newly opened column.

name in zero-terminated string in UTF-8 giving column name

datatype in
zero-terminated string in ASCII describing fully qualified column

data type

SRATableSetIdxColumnDefault

Description

Give a default value for column. Ff no value gets written to a column within an open spot, this

value is substituted.

Prototype

rc_t SRATableSetIdxColumnDefault (SRATable *self, uint32_t idx, const void

*base, bitsz_t offset, bitsz_t size);

Parameters:

Parameter Input | Output Description

self in Handle of table (SRATable) that is being referenced.

idx in 1-based column index

base in Pointer and to start of row data (used in conjunction with "offset")

offset in Offset to start of row data (used in conjunction with "base")

size in size in bits of row data

SRATableWriteIdxColumn

Description

Prototype

rc_t SRATableWriteIdxColumn (SRATable *self, uint32_t idx, const void *base,

bitsz_t offset, bitsz_t size);

Parameters:

Parameter Input | Output Description

self in Handle of table (SRATable) that is being referenced.

idx in 1-based column index

base in Pointer and to start of row data (used in conjunction with "offset")

offset in Offset to start of row data (used in conjunction with "base")

size in size in bits of row data

SRATableMetaFreeze

Description

Freezes current metadata revision. Further modification will begin on a copy.

Prototype

rc_t SRATableMetaFreeze (SRATable *self);

Parameters:

Parameter Input | Output Description

self in Handle of table (SRATable) that is being referenced.

SRATableOpenMDataNodeUpdate

Description

Open a metadata node.

Prototype

rc_t SRATableOpenMDataNodeUpdate (SRATable *self, struct KMDataNode **node,

const char *path, ...);

Parameters:

Parameter
Input |

Output
Description

self in Handle of table (SRATable) that is being referenced.

node out
return value to the meta data node (KMDataNode) where the

metadata is kept.

path in zero-terminated string referencing the table in the filesystem.

SRATableVOpenMDataNodeUpdate

Description

Prototype

rc_t SRATableVOpenMDataNodeUpdate (SRATable *self, struct KMDataNode **node,

const char *path, va_list args);

Parameters:

Parameter
Input |

Output
Description

self in Handle of table (SRATable) that is being referenced.

node out
return value to the meta data node (KMDataNode) where the

metadata is kept.

path in zero-terminated string referencing the table in the filesystem

